Skip to content

Version Notice

(dmontagu/response-format preview) This documentation is ahead of the last release by 1 commit. You may see documentation for features not yet supported in the latest release v0.0.49 2025-04-01.

pydantic_ai.models

Logic related to making requests to an LLM.

The aim here is to make a common interface for different LLMs, so that the rest of the code can be agnostic to the specific LLM being used.

KnownModelName module-attribute

KnownModelName = Literal[
    "anthropic:claude-3-5-haiku-latest",
    "anthropic:claude-3-5-sonnet-latest",
    "anthropic:claude-3-opus-latest",
    "claude-3-5-haiku-latest",
    "claude-3-5-sonnet-latest",
    "claude-3-opus-latest",
    "cohere:c4ai-aya-expanse-32b",
    "cohere:c4ai-aya-expanse-8b",
    "cohere:command",
    "cohere:command-light",
    "cohere:command-light-nightly",
    "cohere:command-nightly",
    "cohere:command-r",
    "cohere:command-r-03-2024",
    "cohere:command-r-08-2024",
    "cohere:command-r-plus",
    "cohere:command-r-plus-04-2024",
    "cohere:command-r-plus-08-2024",
    "cohere:command-r7b-12-2024",
    "google-gla:gemini-1.0-pro",
    "google-gla:gemini-1.5-flash",
    "google-gla:gemini-1.5-flash-8b",
    "google-gla:gemini-1.5-pro",
    "google-gla:gemini-2.0-flash-exp",
    "google-gla:gemini-2.0-flash-thinking-exp-01-21",
    "google-gla:gemini-exp-1206",
    "google-gla:gemini-2.0-flash",
    "google-gla:gemini-2.0-flash-lite-preview-02-05",
    "google-vertex:gemini-1.0-pro",
    "google-vertex:gemini-1.5-flash",
    "google-vertex:gemini-1.5-flash-8b",
    "google-vertex:gemini-1.5-pro",
    "google-vertex:gemini-2.0-flash-exp",
    "google-vertex:gemini-2.0-flash-thinking-exp-01-21",
    "google-vertex:gemini-exp-1206",
    "google-vertex:gemini-2.0-flash",
    "google-vertex:gemini-2.0-flash-lite-preview-02-05",
    "gpt-3.5-turbo",
    "gpt-3.5-turbo-0125",
    "gpt-3.5-turbo-0301",
    "gpt-3.5-turbo-0613",
    "gpt-3.5-turbo-1106",
    "gpt-3.5-turbo-16k",
    "gpt-3.5-turbo-16k-0613",
    "gpt-4",
    "gpt-4-0125-preview",
    "gpt-4-0314",
    "gpt-4-0613",
    "gpt-4-1106-preview",
    "gpt-4-32k",
    "gpt-4-32k-0314",
    "gpt-4-32k-0613",
    "gpt-4-turbo",
    "gpt-4-turbo-2024-04-09",
    "gpt-4-turbo-preview",
    "gpt-4-vision-preview",
    "gpt-4o",
    "gpt-4o-2024-05-13",
    "gpt-4o-2024-08-06",
    "gpt-4o-2024-11-20",
    "gpt-4o-audio-preview",
    "gpt-4o-audio-preview-2024-10-01",
    "gpt-4o-audio-preview-2024-12-17",
    "gpt-4o-mini",
    "gpt-4o-mini-2024-07-18",
    "gpt-4o-mini-audio-preview",
    "gpt-4o-mini-audio-preview-2024-12-17",
    "groq:gemma2-9b-it",
    "groq:llama-3.1-8b-instant",
    "groq:llama-3.2-11b-vision-preview",
    "groq:llama-3.2-1b-preview",
    "groq:llama-3.2-3b-preview",
    "groq:llama-3.2-90b-vision-preview",
    "groq:llama-3.3-70b-specdec",
    "groq:llama-3.3-70b-versatile",
    "groq:llama3-70b-8192",
    "groq:llama3-8b-8192",
    "groq:mixtral-8x7b-32768",
    "mistral:codestral-latest",
    "mistral:mistral-large-latest",
    "mistral:mistral-moderation-latest",
    "mistral:mistral-small-latest",
    "o1",
    "o1-2024-12-17",
    "o1-mini",
    "o1-mini-2024-09-12",
    "o1-preview",
    "o1-preview-2024-09-12",
    "o3-mini",
    "o3-mini-2025-01-31",
    "openai:chatgpt-4o-latest",
    "openai:gpt-3.5-turbo",
    "openai:gpt-3.5-turbo-0125",
    "openai:gpt-3.5-turbo-0301",
    "openai:gpt-3.5-turbo-0613",
    "openai:gpt-3.5-turbo-1106",
    "openai:gpt-3.5-turbo-16k",
    "openai:gpt-3.5-turbo-16k-0613",
    "openai:gpt-4",
    "openai:gpt-4-0125-preview",
    "openai:gpt-4-0314",
    "openai:gpt-4-0613",
    "openai:gpt-4-1106-preview",
    "openai:gpt-4-32k",
    "openai:gpt-4-32k-0314",
    "openai:gpt-4-32k-0613",
    "openai:gpt-4-turbo",
    "openai:gpt-4-turbo-2024-04-09",
    "openai:gpt-4-turbo-preview",
    "openai:gpt-4-vision-preview",
    "openai:gpt-4o",
    "openai:gpt-4o-2024-05-13",
    "openai:gpt-4o-2024-08-06",
    "openai:gpt-4o-2024-11-20",
    "openai:gpt-4o-audio-preview",
    "openai:gpt-4o-audio-preview-2024-10-01",
    "openai:gpt-4o-audio-preview-2024-12-17",
    "openai:gpt-4o-mini",
    "openai:gpt-4o-mini-2024-07-18",
    "openai:gpt-4o-mini-audio-preview",
    "openai:gpt-4o-mini-audio-preview-2024-12-17",
    "openai:o1",
    "openai:o1-2024-12-17",
    "openai:o1-mini",
    "openai:o1-mini-2024-09-12",
    "openai:o1-preview",
    "openai:o1-preview-2024-09-12",
    "openai:o3-mini",
    "openai:o3-mini-2025-01-31",
    "test",
]

Known model names that can be used with the model parameter of Agent.

KnownModelName is provided as a concise way to specify a model.

ModelRequestParameters dataclass

Configuration for an agent's request to a model, specifically related to tools and result handling.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
168
169
170
171
172
173
174
@dataclass
class ModelRequestParameters:
    """Configuration for an agent's request to a model, specifically related to tools and result handling."""

    function_tools: list[ToolDefinition]
    allow_text_result: bool
    result_tools: list[ToolDefinition]

Model

Bases: ABC

Abstract class for a model.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class Model(ABC):
    """Abstract class for a model."""

    @abstractmethod
    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, Usage]:
        """Make a request to the model."""
        raise NotImplementedError()

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        """Make a request to the model and return a streaming response."""
        # This method is not required, but you need to implement it if you want to support streamed responses
        raise NotImplementedError(f'Streamed requests not supported by this {self.__class__.__name__}')
        # yield is required to make this a generator for type checking
        # noinspection PyUnreachableCode
        yield  # pragma: no cover

    @property
    @abstractmethod
    def model_name(self) -> str:
        """The model name."""
        raise NotImplementedError()

    @property
    @abstractmethod
    def system(self) -> str | None:
        """The system / model provider, ex: openai."""
        raise NotImplementedError()

request abstractmethod async

request(
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> tuple[ModelResponse, Usage]

Make a request to the model.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
180
181
182
183
184
185
186
187
188
@abstractmethod
async def request(
    self,
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> tuple[ModelResponse, Usage]:
    """Make a request to the model."""
    raise NotImplementedError()

request_stream async

request_stream(
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> AsyncIterator[StreamedResponse]

Make a request to the model and return a streaming response.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
190
191
192
193
194
195
196
197
198
199
200
201
202
@asynccontextmanager
async def request_stream(
    self,
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> AsyncIterator[StreamedResponse]:
    """Make a request to the model and return a streaming response."""
    # This method is not required, but you need to implement it if you want to support streamed responses
    raise NotImplementedError(f'Streamed requests not supported by this {self.__class__.__name__}')
    # yield is required to make this a generator for type checking
    # noinspection PyUnreachableCode
    yield  # pragma: no cover

model_name abstractmethod property

model_name: str

The model name.

system abstractmethod property

system: str | None

The system / model provider, ex: openai.

StreamedResponse dataclass

Bases: ABC

Streamed response from an LLM when calling a tool.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
@dataclass
class StreamedResponse(ABC):
    """Streamed response from an LLM when calling a tool."""

    _parts_manager: ModelResponsePartsManager = field(default_factory=ModelResponsePartsManager, init=False)
    _event_iterator: AsyncIterator[ModelResponseStreamEvent] | None = field(default=None, init=False)
    _usage: Usage = field(default_factory=Usage, init=False)

    def __aiter__(self) -> AsyncIterator[ModelResponseStreamEvent]:
        """Stream the response as an async iterable of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s."""
        if self._event_iterator is None:
            self._event_iterator = self._get_event_iterator()
        return self._event_iterator

    @abstractmethod
    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        """Return an async iterator of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s.

        This method should be implemented by subclasses to translate the vendor-specific stream of events into
        pydantic_ai-format events.

        It should use the `_parts_manager` to handle deltas, and should update the `_usage` attributes as it goes.
        """
        raise NotImplementedError()
        # noinspection PyUnreachableCode
        yield

    def get(self) -> ModelResponse:
        """Build a [`ModelResponse`][pydantic_ai.messages.ModelResponse] from the data received from the stream so far."""
        return ModelResponse(
            parts=self._parts_manager.get_parts(), model_name=self.model_name, timestamp=self.timestamp
        )

    def usage(self) -> Usage:
        """Get the usage of the response so far. This will not be the final usage until the stream is exhausted."""
        return self._usage

    @property
    @abstractmethod
    def model_name(self) -> str:
        """Get the model name of the response."""
        raise NotImplementedError()

    @property
    @abstractmethod
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        raise NotImplementedError()

__aiter__

Stream the response as an async iterable of ModelResponseStreamEvents.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
225
226
227
228
229
def __aiter__(self) -> AsyncIterator[ModelResponseStreamEvent]:
    """Stream the response as an async iterable of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s."""
    if self._event_iterator is None:
        self._event_iterator = self._get_event_iterator()
    return self._event_iterator

get

get() -> ModelResponse

Build a ModelResponse from the data received from the stream so far.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
244
245
246
247
248
def get(self) -> ModelResponse:
    """Build a [`ModelResponse`][pydantic_ai.messages.ModelResponse] from the data received from the stream so far."""
    return ModelResponse(
        parts=self._parts_manager.get_parts(), model_name=self.model_name, timestamp=self.timestamp
    )

usage

usage() -> Usage

Get the usage of the response so far. This will not be the final usage until the stream is exhausted.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
250
251
252
def usage(self) -> Usage:
    """Get the usage of the response so far. This will not be the final usage until the stream is exhausted."""
    return self._usage

model_name abstractmethod property

model_name: str

Get the model name of the response.

timestamp abstractmethod property

timestamp: datetime

Get the timestamp of the response.

ALLOW_MODEL_REQUESTS module-attribute

ALLOW_MODEL_REQUESTS = True

Whether to allow requests to models.

This global setting allows you to disable request to most models, e.g. to make sure you don't accidentally make costly requests to a model during tests.

The testing models TestModel and FunctionModel are no affected by this setting.

check_allow_model_requests

check_allow_model_requests() -> None

Check if model requests are allowed.

If you're defining your own models that have costs or latency associated with their use, you should call this in Model.request and Model.request_stream.

Raises:

Type Description
RuntimeError

If model requests are not allowed.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
278
279
280
281
282
283
284
285
286
287
288
def check_allow_model_requests() -> None:
    """Check if model requests are allowed.

    If you're defining your own models that have costs or latency associated with their use, you should call this in
    [`Model.request`][pydantic_ai.models.Model.request] and [`Model.request_stream`][pydantic_ai.models.Model.request_stream].

    Raises:
        RuntimeError: If model requests are not allowed.
    """
    if not ALLOW_MODEL_REQUESTS:
        raise RuntimeError('Model requests are not allowed, since ALLOW_MODEL_REQUESTS is False')

override_allow_model_requests

override_allow_model_requests(
    allow_model_requests: bool,
) -> Iterator[None]

Context manager to temporarily override ALLOW_MODEL_REQUESTS.

Parameters:

Name Type Description Default
allow_model_requests bool

Whether to allow model requests within the context.

required
Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
@contextmanager
def override_allow_model_requests(allow_model_requests: bool) -> Iterator[None]:
    """Context manager to temporarily override [`ALLOW_MODEL_REQUESTS`][pydantic_ai.models.ALLOW_MODEL_REQUESTS].

    Args:
        allow_model_requests: Whether to allow model requests within the context.
    """
    global ALLOW_MODEL_REQUESTS
    old_value = ALLOW_MODEL_REQUESTS
    ALLOW_MODEL_REQUESTS = allow_model_requests  # pyright: ignore[reportConstantRedefinition]
    try:
        yield
    finally:
        ALLOW_MODEL_REQUESTS = old_value  # pyright: ignore[reportConstantRedefinition]